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ABSTRACT
Let X]"“’Xn be iid F and let Y]""’Yn be independent (and
independent also of X],...,Xn) random variables. For i = 1,...,n, set

61. =TT Xi iYi and =0 if Xi > Yi’ and Z1. = min{Xi,Yi}. Then 1

assuming that F s distributed according to a Dirichlet process (Ferguson,
(1973) Ann. Stat. 2, 209-230) with parameter «, the authors (1976), J. Amer.

~

Stat. Assoc., 61, December) obtained the Bayes estimator Fa of F under
the loss function L(F,F) = JS(F(u)-F(u))?dw(u) using (5]’21)""’(6n’zn)'
Now let X]""’Xn be iid F0 and Y]""’Yn be iid G where both F0

and G are unknown continuous distributions. In this paper, it is shown

that Fa is mean square consistent with rate O(n-]) and almost sure

consistent with rate 0(log n//n). Also, it is established that

{Fa(u)lo <u < T}, T <=, converges weakly to a Gaussian process whose co-
variance structure coincides with the 1imiting covariance structure obtained

from Kaplan-Meier's ((1958), J.Amer. Stat. Assoc., 53, 457-481) product

limit estimator by Breslow and Crowley ((1974), Ann. Stat. 2, 437-453).
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LARGE SAMPLE THEORY FOR A BAYESIAN NONPARAMETRIC
SURVIVAL CURVE ESTIMATOR BASED ON CENSORED SAMPLES

758 :Susax'lal’2'3 and J. Van Ryzinl’z'dl
1. INTRODUCTION AND SUMMARY

Recently, attention has been drawn to the consideration of obtaining
nonparametric Bayes estimates of a distribution function assuming a manageable
prior (resulting in a manageable posterior distribution) on the space of dis-
tribution functions F on R = (-»,»), Towards this goal, Ferguson [4]
introduced a class of priors, known as Dirichlet process priors, on F which
enjoy the property that the posterior distribution is again a Dirichlet process.
Ferguson used this fact to obtain the Bayes estimator of the right sided
cumulative distribution function F (F(x) denotes the probability in (x,»)
and this useful convention is borrowed from Efron [3]) under a weighted
squared error loss function. It can be readily seen that this Bayes estimator
of F will have all the asymptotic properties enjoyed by the maximum Tikeli-
hood estimator of F if there is no prior on F and the observations are

i.i.d. with an unknown right c.d.f. FO'

An important problem in survival analysis is that of estimating
either parametrically or nonparametrically the survival curve P(X > x) = F(x).
(See, for example, Gross and Clark [6]). While treating this problem of
estimating survival curves based on incomplete data, the authors [11] obtained
the Bayes estimator of F under a weighted squared error loss function when
the independent observations from F are randomly censored on the right
under Dirichlet process priors of Ferguson [4]. They demonstrated that this
Bayes estimator is an extension of the above mentioned Bayes estimator of
Ferguson [4] and in a certain sense, also of the well-known Kaplan-Meier
(KM) estimator [7] which maximizes the 1ikelihood of the observations.
Efron [3] and in a more detailed manner, Breslow and Crowley [1] showed

that the KM estimator is weakly consistent and asymptotically normal
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under the assumption that all the censoring random variables are i.i.d.
continuous random variables.

The object of this paper is to show that our Bayes estimator has good
limiting properties including mean-square consistency (m.s.c.), almost sure
consistency (a.s.c.) and asymptotic normality assuming that the observations

are i.i.d. with right c.d.f. F, and that the censoring random variables

0
are i.i.d. with a continuous distribution function. Efron [3] and Breslow
and Crowley [1] have neither rate of convergence results for their weak
consistency nor do they have m.s.c., while we obtain rates for both m.s.c.
and a.s.c. Our methods of proof, in contrast with those of Breslow and
Crowley [1], involve the analysis of the expectation and the variance of the
Togarithm of wn(u) involved in the Bayes estimator given in (2.2).

This paper, therefore, generates a new class of estimators of FO’
one for each parameter of the Dirichiet process, when the observations are
censored on the right. Furthermore, we have shown that each member of the
class has better asymptotic properties than those established for the KM
estimator by Breslow and Crowley [1]. For results of this type in para-
metric cases, see the bibliographies of Lindley [8] and Shapiro [9]. A
justification for this paper is given on page 615 of Ferguson [5]. In his
words, "Bayes rules are certainly desirable since generally they are
admissible and have nice large sample properties. Therefore, it behooves
the statistician to suggest large classes of easily computable Bayes rules
in the hope that users may find some rules to their 1iking," especially if
the Bayes rules have the usual large sample properties enjoyed by the
maximum likelihood estimator.

The next section formally describes the precise statement of the

aFa




problem and needed assumptions. The rest of the sections deal with various

asymptotic aspects of our Bayes estimator.

with F(0) = 1 and Y],...,Yn be another random sample such that

(X1,...,Xn) and (Y1""’Yn) are mutually independent of each other. Set

(2.1)

for

DESCRIPTION OF THE PROBLEM AND SOME NOTATION

Let X],...,X

T ———

s be a random sample from a right sided c.d.f. F

. = [X, f-Yi] and Zi = min{Xi,Yi}

1

1,...,n and assume that 1 ~ F be distributed according to

Dirichlet process with parameter measure o on the Borel o-field B in

(O’m)_

Then the Bayes estimator of F, under the loss function,

L(F,?) = Iw(F(u)-E(u))zdw(u), is shown in [11] to be
0

(2.2)

where N+(t) =

V= Vs shts

~

F
a

(A1)

(A2)

The main results of this paper concern the asymptotic behavior of

under the following assumptions:

X],...,Xn are i.i.d. with right sided c.d.f. FO’ a fixed

unknown distribution on (0,®) F

continuous distribution on (0,=).

) +
_alw) +N(u) 7 B e
aRY) + 0 i=) a(z7) + N+(Z1.)

Bn(u) wn(u)

of observations >t and xi = # of observations at Zi’

are i.i.d, with right c.d.f. G, a fixed unknown

=3




_ —

Thus, while the rule under consideration is a Bayes rule, the asymptotic

properties of Fu are obtained in a non-decision theoretic setup. In other

words, we obtain the asymptotic behavior of ;q as an estimator of FO'
Throughout we assume that for a fixed (but otherwise arbitrary) u,

(A3) alu) > 0.

Since it is not possible to estimate FO(u) whenever G(u) = 0, we assume

throughout that G(u) > 0 without further reference.
In the hope of reducing repetition, a right sided c.d.f. is referred
to as simply a distribution and the assumptions stated above are assumed

throughout the paper.

3. MEAN SQUARE CONSISTENCY WITH RATES

~

This property of F(}L can be studied through the corresponding one

for the logarithm of wn(u) of (2.2). Under (A3), one obtains that

n a(Z7) + N (z,) +1
(3.1) In Hn(u) = J[6,=0,2, <u] 1n 1_ L

1 ! oy (1(21) 5 N+(Z1)

where a(s”) = limit of a(t) as t + s. Observe that (3.1) (and hence
(2.2)) is well-defined since a(u ) > 0 by (A3). This property is not enjoyed
by the KM estimate which is not always well-defined in the right tail. It
is precisely this property of converting (2.1) into a sum by use of logarithms
that allows us to obtain stronger convergence results than do Breslow and
Crowley [1] for the KM estimator.

For dealing with the expectation and the variance (and properties
based on these) of 1n Nn’ the following decomposition which follows by a
logarithmic expansion of the summands in (3.1) and the succeeding lemmas

will be extremely useful:




(3.2) In wn(u) = Rn,](u) + Rn,Z(u) + Rn’3(u)
where

L =
{3.3) R, q(u) = j‘/:][&‘j =0, Z; <ulH (Zj)’

n
(3.4) R, .p(W) = j;[aj =0, Z; < u] }j Wi z )+14N* (25 )t
and

i 1
(3.5) oR .{u) = ]} [8, =48, Zy < UJ{n[(a( J1eN (Z i 0% &
n,3 j=1 9 J

where
(3.6) H = FOG r
Lemma 3.1. E[Rn ](u) = In G(u) and nH?(u) var(Rn ](“)).i 1.
Proof. Since the summands of Rn ](u) are identically distributed,

E(R, 4(u)] = E[[s, = 0, 7 < u]H"(z])] = -Oqu ()" (£)d6(t) = -Tn G(u)

by the definition of H 1in (3.6). The variance result follows since each

of the iid summands in R_ 1(u) is bounded by H'](u).

Lerma 3.2 of (uTH* () (", IERE L(w)] < m¥(THa(u))2.

Proof. Since (a] St e Z a for any real numbers Ayseeesdps
i=1

and since for fixed n, the summands of Rn 2(u) are identically distributed,

“ZEIR: ,(u)] < ElDs, = 0,2, < ull z Nz ()™ )
(3.7)
< Zz(u(u')ﬂ)Z'Q}ZE[(a(u')+1+N+(U))'4]
9=

e s i, o AN b s .‘




where the second inequality follows by bounding the series by

o0

(7 ()™M a(u™)H1+N  (u))
=2

2 and by dropping the indicator function.

The result now follows from the following inequality and (3.7)
EL(au™)+ 1N (u)) ™4 - z ("o (alu)+14k) ™ () (1-H(u)) 1K

Z <212)Hk*4<u>(1-H(u))“*3"“*4’/(";3)

where the inequality follows since k+i < i(a(u”)+k+1) for i = 1,2,3, and 4.
Lemma 3.3.

a) nH?(u) [ELR) 5(w)]] < a(R")+(1-H(u))"(nta(R"))+2/ma(R") (1-H(u) /2 (n1) ]
+ 2a(R") (2+a(R")) {n(n+1)} !

b) (n+2)H2(u)E[R§,3(U)] < 2{1-H(u)+2(n+2)-](az(R+)+(1-H(u))2)}.

Proof. Since the summands of Rn 3(u) are identically distributed,

B[R, 5(w)] = EL[8,=0,Z,<ulink(z} ) 418" (2;))-H" (2,)}]

(3.8) ;

IF o (O)EIn(a( t7)+1+K ) o171 (£) Jda(t)
; .

where Kt is a binomial random variable with parameters n-1 and H(t).

Now observe that after some simplification,
- o1 o] Hot pat -1 .
H(t)E[n(a(t )+1+K ) -H "(t)] = z ( K ) (k+1) " {nH(t)-a(t™)-k-1}
k=0

(3.9)  x H¥(£)(1-H(t))" K Te z a(t™) (k+1+a(t™)-nH(t)}

n-1-k 1

x H¥(t) (1-H(t)) (k1) (k+14+a(7))}) = T+ I1.

By a rearrangement,




H(E)T = a(tT)+(1-H(t)) " (nH(t)+a(t™))

while
2 -y n=1 1 = k 1-(k+2
I 5'"%££]; kzo(ziz)|k+2'(”+1)”(t)*“(t)+a(t LK () (1-H()) M- (k¥2)

since k+2 < 2(a(t™)+k+1). By a change of variable (k+2 = £) and by using
the binomial moments, we can show from the above inequality that

i

o ]/2 =
2a(t {Hjﬁ)(1 H(t)} H(t)+a(t™)+1 |
Iiﬁ T 3 ) B

yn(n+1) )

This bound on II together with that on I, (3.8) and (3.9) give the first

result since t <u in all the calculations after (3.8).

n
Using the inequality ( } a )2 <n Z a and the fact that the summands
i=1 i=1

of Rn 3(u) are identically distributed for fixed n, it can be shown that

E(RZ 4(u)] < - ’ Fo(t)E[(n(a(t')+Kt+])']—H'](t))z]dG(t) where K. is as
0

in the proof of a). From here on, the proof runs parallel to that in a).
Two consequences of the decomposition (3.2) and the above three
lemmas are given below, the first of which conserns the mean square consistency
’

(m.s.c.) of 1n wn as an estimator of 1In G'] while the second one concerns

the m.s.c. of Fa of (2.2) as an estimator of FO‘

Theorem 3.1. Let Fo(u) > 0. nE[|In wn(u)-1n G'](u)lz] is bounded.

Proof. The proof is a direct consequence of the decomposition (3.2)

and the above three lemmas.

Theorem 3.2. Let Fo(u) > 0. Then nE[(F (u)- F u))?] is bounded,

where the bound is given in the remark below.

o D




Proof. Recalling that B, and W, are defined in (2.2), we obtain by

a Cr—inequality,

-1

(3.10) 27 (F_(u)-Fy(u)? < 674

) (B, (u)-H(u))2+BZ (u) (W (u)-6"" (u))?

n
where we used the equality H = FOG. Since an(u) can be approximated by
the binomial random variable N+(u) whose expectation is nH(u)(=nFO(u)G(u)),

we obtain that

(3.11) (u(R+)+n)7E[(Bn(U)-H(u))2] = (a(u)-H(u)a(R")) 2+nH(u) (1-H(u)) .

In W (u)

After writing e and e I G(u)

for wn(u) and G'](u),
respectively, and then using the mean value theorem leads to (Nn(u)-G-](u))z

1

< 1n W (w)-Tn 671 (u) (4, (u)+67 (u))? since W (u) and 67'(u) > 1. Hence,

(3.12)  E[B2(u)(W (w)-671(4))?] < (14671 (u))2EL |10 W, (w)-In 67 (u)|?]

since B and B W are < 1. Using the fact that E[|A+B+C|?] < 3(E[A?]

+ E[B?] + E[C?]) and then using Lemmas 3.1, 3.2, and 3.3 give the result
in view of (3.10) - (3.12).

Remark. The bound in Theorem 3.2 is given by

C, (u) = 2{a(RY)+n )2 0n2H(u) (1-H(u) )+n(a(u) -a (R )H(u))?)

+ 601467 () 2H 2 (W) a2 (WH 2 () (") (1 (u7))?
+ the rhs of b) in Lemma 3.3 + the square of the rhs of

a) in Lemma 3.3}.

4,  ALMOST SURE CONSISTENCY

Looking at the estimator F(1 of (2.2), it is obvious that Fa

converges a.s. provided wn(u) does Tikewise. The following lemma concerning

i




the almost sure behavior of R R ., and R involved in In W (u)
faa n,3 n

i

of (3.2) is essential for the main result of this section. '

Lemma 4.1. Let FO(u) - 0. Then
a) R i(u) + In G(u)| = 0(193—199~£0 a.s. E
Ly y/ﬁ {
b) R )] = 0l as,
> /n
c) R )] =01 as.
? /n
Proof. a) follows from the first part of Lemma 3.1 and the law of iterated

logarithm for iid random variables. b) follows from Lemma 3.2 and the

oo

Glivenko-Cantelli theorem since } n'l(log n)-2 < o,
n=2

To prove c), we observe that {Rn 3(u){ is exceeded by

-1 i n 1
{n b8: = B & < ull sup {|————— - ¢ |} .
Jat — 0<t<u alt)H I (t) ()

{1 =g

Since the expression in the first curly brackets is bounded by unity, it is

enough to show that

. 1 ) log n
(4.1) sup {| L - [} = 0f J 8.8,
0<tc<u u(t')+1+N+(t) H(t) Jn

The 1hs of (4.1) is bounded by

+ -

1 n N (t) T+a(t )
4.2 iy ey { - H(t) - I} .
ki HUl Smsa' ) o (Si?i u T A

Now by Lemma 1 of Dvoretzky, Kiefer, and Wolfowitz [2]

. 4 2
AL sup ({ﬁjgil - H(t)|} > €] << e-c(log n)

-9-




for some absolute constants o and c. Hence

+
sup (ML o)) = odeLyy s,
G<tzy /n
since c(log n)? > 2 log n for large n and |} n ° < «, This completes
the proof of (4.1) and hence also of «c¢).
Theorem 4.1. Let Fo(u) > 0. Then E

~

F (u) - F

o O(U) = 0(log n/v/n) a.s.

Proof. By a triangle inequality,

—

(0.3)  [F (w)-Fylu)] < 67" (u)]B, (u)-H(u) [+B_(u) IW_(u)-6"" (u)].

The first term on the rhs is 0(log log n//n) a.s. since I(N+(u)/n)-H(u)‘
= 0(log log n/v/n) a.s. by the law of iterated logarithm.

As in the proof of Theorem 3.2, we can show that
(4.4) B, (u) [W_(u)-67"(u)] < (1467 (u)) [1n W_(u)-1n 67 (u) .

But [1In wn(u)-ln 6'1(u)l = 0(log n/V/n) a.s. due to the decomposition (3.2),
a triangle inequality, and parts a), b), and c) of Lemma 4.1. Thus (4.3)

and (4.4) complete the proof.

5. WEAK CONVERGENCE OF ?a

In this section, we consider the weak convergence of {Ea(u)lo <u<T}
where T < =, We assume throughout this section that H(T) = FO(T)G(T) > 0.
It is convenient sometimes to suppress the dependence of the functions and
to let || ||; denote the sup norm over (0,T].

The discussion to follow reduces the consideration of

(F

u(u)]D <u < T} to a much more accessible form. To start with, we observe that

~]0=




= 1 1

~ - = - /n en
(5.1) /ﬁ(Fa FO) /ﬁ(en H)G™ ' + .n(wn G )Bn
and that
=1 -1
InW 1InG -1 InW-In G
Nn-G.’I = @ Ma = e]n G (e ¥ =11
#1
(In W -1n 6™ ')? =1
=6 (InW_ - nG7) + —10 gecfom b

2

where ¢ is between 0 and 1In wn - In G']. Therefore, from (5.1), we

H/F(EQ-FO)-/EG_l(Bn—H) -/ HG_](ln W=1n g I
I
(5.2)

1

, -1 b g
< /AYB K ln W=t 6T [ 6T 5 (e W -Tn 6T )2,

The purpose of the following lemma is to show that the rhs of (5.2) - 0

a.s. by showing that n® [ 1n W -Tn 6! ”T -+ 0 a.s. for any 28 < 1.

Lemma 5.1. n® [[Tn W = Tn g ll; > 0 a.s. for any 28 < 1.

~ u
Proof. With Hn(u) = Fo(t)d(l-G(t)) = P[Gl = 0, Z] < u] and with

0
x n
nH_(u) = jgl[éj =0, Z; < ul, we have
-1 ‘a2 ¥ f =, -1 & il o I
[[1n W.-1n G HT = || é’n In{1-(a(s™)+1+H (s)) }dHn(s)-({H (s.)dH(s)[,T

~

< | g'nfu(s')+1+an(s)}‘1dﬁn(s)- g H (s)aH(s) Il

3 n (U+a(17))°
(a(T7)+14nH (T))*  (a(T7))?

where the inequality follows by a logarthmic expansion and an obvious weakening
of the series from the second term onwards. Observe that the second term in

the rhs of (5.3) ~ 0 a.s. at a rate n® with 28 < 1.

=l




For the first term on the rhs of (5.3),

-1 My

nia(sT)+14nH ())7NaH (5) - T KTV (s)aH(s) Il
0

1

(5.4) < Ho}{n{x(s-)ﬂmHn(s)}- - (s) M (s) Il + nO}H"(s)d(ﬁn-ﬁ)(s) Iy

< uo}[n{a(s‘)nmnn(s)}"-H“(s)]dﬁn(s) Il + 207 (T |IH -H Il

where the second inequality follows by applying integration by parts to

1

i H'](s)d(Hn-H)(s) and upon observing that the variation of H ' on (0,-]

0
is H-](-). By the law of iterated logarithm for iid random variables

Hn(a(-')+1+an(-)}—H'](-) ”T -~ 0 a.s. at a rate O(n'B) with 28 <1
and by applying the argument given by Singh [10] to the random variables
[Sj = 0, Zj <ul, j =1,...,n, we obtain that HHn-H ”T +~ 0 a.s. at a rate

O(n"B) with 28 < 1. Consequently the rhs of (5.4) and hence, the rhs of

(5.3) > 0 a.s. at a rate O(n'B) with 28 < 1.

In view of (5.2), an easy Corollary to the above lemma is

Corollary 5.1. [[VA(F -Fy)-/AG™" (B -H)=/AHG™ (1n W -1n 6™) l; 0 a.s.

at a rate O(n'B) for any 28 < 1.

By following the method of proof of Lemma 5.1, we can also show that

Lemma_5.2. |[v/n(1In W,-Tn G'])-/ﬁ(f.Hr—]]dHn - }H°]dH) ||T + 0 a.s. at a rate
0

0
0(n~®) with 28 < 1.

Sl




Note . The random integral / H;‘]dHn could be infinity, but finite a.s.
0

since P[H (s) = 0] = P[5, = 0, 2y < s forj = : FUI :_P[Zj < T for
J = Vaeeesn] = (1-H(TH" for all s <
Hence, by Corollary 5.1 and Lemma 5.2, we can study the weak conver-

gence of fFL(u)ED <u < T} through the corresponding one for

/e (B -H) + JaHe V(s Van. - uVam)
n 0 n n O

The following theorem, which is parallel to Theorem 3 of Breslow and

(5.5)

Crowley [1], is needed in the study of the weak convergence of (5.5) or

equivalently that of IFa(u)lo < &< T,
Theorem 5.1.  Define (P ,0 )<D(0,T) x D(0,T] (D(0,T] 1is the space of
functions on (0,T] with jump discontinuities)by e /F(H-Hn) and

Qn = /ﬁ(Hn-ﬁ). Then (Pn,Qn) converges weakly to a bivariate Gaussian

process (P,Q) which has mean 0 and a covariance structure given for

s <

t by

g Cov(P(s),P(t)) = H(t)(1-H(s)) ,
Cov(Q(s),Q(t)) = H(s)(1-H(t)) ,
Cov(P(s),Q(t)) = H(s)-H(t)(1-H(s)),

_and Cov(Q(s),P(t)) = H(SIH(t)

where H = F.G and H = } F.d(1-G).
0 0 0

As in (7.9) of Breslow and Crowley [1], we can represent (5.5) as
. 1
{(5.7) (5.5) = VnG (Bn-H) + An " Bn 17 R] f e R?,n

~]3a

-




Pt
A = TP ,
n 0 n
' 8 = QM -7 anZaa-n) ,
n n 0 n
S 1/2 .
e R
l R mn J'PnH HldH o,
¥ . _] _] ~ -~
and R2,n = J’PnH Hn d(Hn-H)(u) v

By the above representatijon for (5.5) and steps similar to Theorem 4 of

Breslow and Crowley [1] , we obtain the following theorem which is similar to

Theorem 5 of Breslow and Crowley [1].
Theorem 5.2. Let T <o and H(T) > 0. Let F0 and G be continuous.
Then the random function /ﬁ(Fa-FO) on (0,T] converges weakly to a mean

P+ s HZdH +H g+ H2dH with covariance
0 0

0 Gaussian process R* = ¢!

structure given for s <t by

Cov(R*(s),R*(t)) Fo(s)Fo(t){H"(s)(l-H(s))+ ; H e lde)
0

(5.9) &
Fo(s)Fg(t)e d‘H'lFald(l-Fo)} .

Remark 5.1, The covariance calculations involved in (5.9) are given in

the Appendix. We notice here that the rhs of (5.9) coincides with (7.13)

of Breslow and Crowley [1].
CONCLUDING REMARKS

There are three small sample advantages for the Bayes estimator (2.2)
over the KM estimator. The first is that it is defined everywhere on the
real Tine for any n while KM estimator is not. Secondly, as illustrated

in our paper [11], the Bayes estimator is smoother than the KM estimator.
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The final important advantage is that the Bayes estimator is an admissible
estimator of F provided that the support of o = support of w = (0,%)
under the loss function L(F,?) = } (F(u)~?(u))2dw(u) and under the weak
convergence topology. ;

The results of this paper can be extended to the case in which

Y]""’Yn are independent, but not identically distributed. The technique

used to obtain this extension is different from the ones proposed here and

will appear elsewhere.
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APPENDIX: COVARIANCE STRUCTURE OF R* OF THEOREM 5.2

*
To study the covariance structure of R , it is convenient to study

the covariance structure of

R=FR" = WP+ £ u?pan+wlg+ %

0 0

We use repeatedly (5.6), integration by parts and the equalities H = FOG

and dH = d( fFOd(l-G)) - -FdG. We write Cov(R(s),R(t) = Var(R(s))
0

+ Cov(R(s),R(t)-R(s)) for 0 <s <t < T, show that Var(R(s)) = the

expression in the curly brackets of (5.9), and that Cov(R(s),R(t)-R(s)) = O.

VARIANCE OF R(s)

Ts)p(s)) = H(s)(1-H(s))

1

(1) Var(H™

21V (s)H(s)

(2) 2Cov (K (s)P(s),H (s)Q(s))

(3) 2ou(i (s)p(s), W2haR) = 2wl (s) 7 Cou(PLLPLs))
0 0 H? (u)
- 2 1M s
0 H
i3 i) _ 2 > Cov(P(s),Q(u))
(4) 2Cov(H (s)P(s),({QH dH) = ﬁ1§7’d' H2 (u) o

H(s
+2H{»s—§—+21ne(s),

(5) var(7H-2pa) = 2 7 7 COVPLULPN)) g p)dii(u)
0 00 H(u)H*(r)

(= S ~ S
P S ), dH(u 2 (In G(s)=-1n G(r)) n_y.2
. 2({'Tﬂé3_'ﬂf dlu) ) anir) = 2 s e 1) 46-1n26(s),

0
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(6) var(w'(s)a(s)) = His)(1-H(s))

H? (s)

(7) var(H20aH) - 2 7 r Cov(Qu)a00M) gy )an(r)
0 00 Hz(u)Hz(r)

s u i -
= o ;s HO)A-HGD) gur)dH(u) = —-ﬂ{ g- -In G}dH
00 H2(u) H¥(r
s ¢ o~ o~
HZ(s) 0 H ii( )

S S.ln ~
-/ —=dG + s ) dH
0 0 ‘

(8)  2Cov(H-2rdi, i (s)a(s)) = H(S) 7 Cov(Q(s),P(u)) 4hey)
0 HZ(u)

2 |5
= ;M dH ~ H(s) f-—— dH + H(s)
H(55{; H2 0 H2

Owwn
x|~

d?}

S
(9)  2Cov(H ' (s)Q(s), / H2QdH) = —9!191—1491—11-du
ov( $)Q(s : Q ﬁTES_O " (u)
_ 201-H(s)H(s) _ 20-H()) 1, gys)
H%(s) H(s)
S -2 ~ S -2
(10)  2Cov(/H “PdH, fH QdH)
0
_ o 7 Cov(P(u),Q(r) gy(ryami(u) + 2 F £ COUPCr)LQMU) Ghryan(u)
00  H2(u)H*(r) 00 HZ(u)H%(r)
_ o 7 YHOMW)  eyanir) + 2 5 o BELHODOHG) gy i)
0 OHZ(u)H?(r) 00 H2(u)H%(r)
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2 Sy S HdH _ 2H(s) S d6 , 2H(s) S H =
= f——dG+2f In G(s) - 2 f — dH
H(s)o 0 W H(s) [ 0 e " “H{sT 0 H®

Aobn " |
+2r Han oo y (In Géé) -1n G(r)) dH + 9 f 1n st) In G(r) 4G
0 H? 0 0 |

-27 M aH + 1n26(s).
0 H2

Adding (1) through (10) and using the facts that H = FOG and

dH = -FOdG wherever necessary, we obtain the expression in the curly

brackets of (5.9).
COVARIANCE OF R(s) AND R(t)-R(s)

There are 16 terms in this covariance calculation which are grouped
below into 5 sets of expressions. The sum of all the expressions in each
group will be equal to zero, thus showing that Cov(R(s),R(t)-R(s)) =0

for U<s=t<i.

(A1) Cov(—%—%— —é_%. _{_%_ COVHPttH z $)) . Va;iii;)z K

APk t i
(A2) Cov(%%l ,SJ'H'ZPdH) . H"(s)sf C°":’:§:§’P(§D dH = ‘—;{*('-s(-srl(m 6(s)-1n G(t))

(A3) Cov(%,%-%) =“H{‘(“Y'”‘ HtsHs

t - o
Cov(P(§) P(u)) H(§)-H(U)(1-H£§))

4—;{77 —nj H&%—; H

<19 =




(81)

(B2)

(B3)

(c1)

Cov(IH 2pgn, PT—; P(S
1 3 Cov(P(u),P(t)) 4 1 5 Cov(P(u),P(s)) 4
= ! dH(u) - ! dH(u)
H(tY M2 (u) YTHGSY M2 (u)
= j§ m da(u) = ? L:Hiyl da(u) I (S
0 H2(u) 0 H2(u)
Q P(t) P - P(t Cov(Q(s),P( i}
cov @ Rt} - TED = MR - HSZ) 2 - 0.

COVLP(U) Qt)) 4

Cov( fH 20dH, dH(u)
R - wtep = et
] COV(Q(ULP(SJ) »
s dH(u) = 0.
mo (U)
w & t i .
Cov( TH-2pdH, H™2PdR) = 7 7 Cov(P(u)sP(r)) gh(u)dH(r)
0 s 00 H2(u)H*(r)
t = o
f—‘-—”—(—r—l dH(r IH—(]—-)— dH(u) = ? 1=H(0) (1 6(s)=Tn G(t))dH(r)
0 HZ(r) s M\ H2 (1)
= (In G(s)-1n G(t)) f ———}ir-)ldH(r)
0 (r

COV(Q(tl P(u)) 1

S Cov(Q(s),P(u)) 4
ww &g o

H? (u)

Cov( fH PdH, -%—-% H HTS) 0

1 ) H(u) H(t)U H(u)) dH(u) g H(u) H(s)('l H(u)) dH( )

H(t)o HZ(U) H(5)0 HZ(u)
15ﬁ"ﬁt)su 1Sﬁ”ﬁ51-n"
. —L—f——— e T L Y
HIE) § we H(t) 0 K2 ORET Ho w2
» 20

P —— ——— - i . .




(€3)

(01)

(D2)

(D3)

(E1)

& ot Rt s
Cov( 1 2pdH, [H7%0dH) = J Cov(Q(r)P(u)) gu(r)dH(u)
0

0 5 é H? (r)H? (u)

t ¥ ~
= S; r ,MHM dH(r)dH(u)

i

(g HZ (u)H?(r)
R 1S HaH ﬁ(tg E(s; B (s
= 1"1‘({? - m}({ = F {H ) " (s + 1n G(t)-1In G(S)}Of —H—de

t v t =
Cov(H™ (s)Q(s), SH 2PdH) = wi(s) s Cov(Q(s)sP(U)) gu(u)
s s H? (u)

E%g%-(1n 6(s) - 1n 6(t))

~

s H{s}%] %t)) ( ) (1- Hgs)
H(s)H(t HZ(S)

i}

5 t
Ols) 1 Cov(Q(s 1-H H
Cov ( , JH TQdH) = f —(—%— ;S — dH
Hs)” o ATs) g H2 (u)
= F%%{ - 6 +H{—E—%—-%—%—§%—+1ne(t)1nGs)}
S t - s t =
Cov(FH=2qdH, FH2pdr) = £ 1 &2 P(r),QCu)) gu(r)dH(u)
0 s 0s H2 (r)HZ(u)
St o X
iy _Jﬂﬁ).’if.!l_dH( )dH(u)
0 s HZ(r)H*(u)
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(£2) Cov(OfH'ZQdH, Q%)7 & %(r%)

ey S Cov(Q(t),Qu)) e ;COV(Q(S).Q(U)) dH(u)
CH g W) o) - Y0 T heta)

- ¢~ ~ ¢ -
1-H(t ;t@i-l:#lf._”d}{_
Ht) 5y 0 H2

Cov(Q(r)QMu)) 4uy(yu)dH(r)
H? (u)H? (r)

$ 0 % g %
(E3) Cov (/H “QdH, H™QdH) = Off
S

~

£ IHW) gy % dH(r)

! RE AT S H(t) _ R(S) 4 1p g(t)-1n 6(s)).
={—(——)—HS-—(——)-Ht}6f——dH+(f dH){—HHt “Hus n G(t)

|
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Abstract (2)

(1973) Ann. Stat. 2, 209-230) with paramcter «, the authors (1976), J. Amer.

Stat. Assoc., 61, December) obtained the Bayes estimator FQ of F under

A

the loss function L(F,F) = JS(F(u)-F(u))?dw(u) wusing (61’21)""’(6n’zn)‘

Now let X ,Xn bet Add VR and Y ,...,Yn be iid G where both F

e 0 ] 0

and G are unknown continuous distributions. In this paper, it is shown

~

that Fu is mean square consistent with rate O(n']) and almost sure

consistent with rate 0(log n/vn). Also, it is established that
{Fa(u)lo <u < T}, T <=, converges weakly to a Gaussian process whose co-
variance structure coincides with the limiting covariance structure obtained

from Kaplan-Meier's ((1958), J.Amer. Stat. Assoc., 53, 457-481) product

limit estimator by Breslow and Crowley ((1974), Ann. Stat. 2, 437-453).




